The Kamei Laboratory
  • Home
  • People
    • Daniel Kamei
    • Graduate Researchers
    • Undergraduate Researchers
    • Alumni
  • Research
    • On-Demand Detection of SARS-CoV-2 Nucleocapsid Protein
    • Automated Preconcentration, Capture, and Nanozyme Enhancement
    • One-pot DNA Concentration and Amplification
    • Point-of-Care Cerebrospinal Fluid Leak Detection
  • Publications
  • Kamei Lab Socials

PUBLICATIONS

  1. P. Pandolfi, H. Zhang, Y.E. Nadalin, M.E. Prasetyo, A.A. Toubian, B.M. Wu, and D.T. Kamei, “Degradation of Hydrogel Beads for the Detection of Serum Bicarbonate Levels for the Diagnosis of Metabolic Alkalosis at the Point of Care.” Soft Matter, 18, (2022) 8147–56.
  2. F.D. Nicklen, A.J Diaz, J. Lu, S.T. Patel, E.M. Zheng, V.R. Campbell, B.M. Wu, and D.T. Kamei, "Application of the aqueous two-phase system and nanozyme signal enhancement for the improved detection of Plasmodium lactate dehydrogenase in serum," Anal Bioanal Chem 414, (2022), 7949–7956.
  3. D.W. Bradbury, J.T. Trinh, M.J. Ryan, K.J. Chen, A.A. Battikha, B.M. Wu, and D.T. Kamei “Combination of the Lateral-Flow Immunoassay with Multicolor Gold Nanorod Etching for the Semi-Quantitative Detection of Digoxin.” Analyst, 147, (2022) 4000–07. 
  4. I.M. Hwang, C.M. Cantu, R. Chawla, and D.T. Kamei, “Biosensor-based point-of-care devices: detection of infectious diseases and cancer,” Book chapter in BioSensing, Theranostics, and Medical Devices: From Laboratory to Point-of-Care Testing, pp. 105-132. Springer Nature
    Singapore Pte Ltd. Copyright 2022.
  5. I.M. Hwang, X.A. Lou, A.A. Toubian, and D.T. Kamei, “Biosensor-based point-of-care devices: metabolites and pulse oximetry,” Book chapter in BioSensing, Theranostics, and Medical Devices: From Laboratory to Point-of-Care Testing, pp. 83-104. Springer Nature Singapore Pte Ltd. Copyright 2022.
  6. D.W. Bradbury, J.T. Trinh, M.J. Ryan, C.M. Cantu, J. Lu, F.D. Nicklen, Y. Du, R. Sun, B.M. Wu, and D.T. Kamei, “On-Demand Nanozyme Signal Enhancement at the Push of a Button for the Improved Detection of SARS-CoV-2 Nucleocapsid Protein in Serum,” Analyst, 146 (2021) 7386-7393.
  7. I.S. Kurnik, N.A. D’Angelo, P.G. Mazzola, M. Chorilli, D.T. Kamei, J.F.B. Pereira, A.A. Vicente, and A.M. Lopes, “Polymeric micelles using cholinium-based ionic liquids for the encapsulation and release of hydrophobic molecules,” Biomater. Sci. 9 (2021) 2183-2196.
  8. V.R. Campbell, M.S. Carson, A. Lao, K. Maran, E.J. Yang, and D.T. Kamei, “Point-of-need diagnostics for foodborne pathogen screening: a review,” SLAS Technol. 26 (2021) 55-79.
  9. E.A. Pumford, J. Lu, I. Spaczai, M.E. Prasetyo, E.M. Zheng, H. Zhang, and D.T. Kamei, “Developments in integrating nucleic acid isothermal amplification and detection systems for point-of-care diagnostics,” Biosens. Bioelectron. 170 (2020) 112674.
  10. D.W. Bradbury, A.E. Kita, K. Hirota, M.A. St. John, and D.T. Kamei, “Rapid diagnostic test kit for point-of-care cerebrospinal fluid leak detection,” SLAS Technology, 25 (2020) 67-74.
  11. D.W. Bradbury, M. Azimi, A.J. Diaz, A.A. Pan, C.H. Falktoft, B.M. Wu, and D.T. Kamei, “Automation of biomarker preconcentration, capture, and nanozyme signal enhancement on paper-based devices,” Anal. Chem., 91 (2019) 12046-12054. 
  12. D.Y. Pereira, C.M. Wu, S.Y. Lee, E. Lee, B.M. Wu, and D.T. Kamei, “Controlling macroscopic phase separation of aqueous-two phase polymer systems in porous media,” SLAS Technology, 24 (2019) 515-526. 
  13. M.F. Yee, G.N. Emmel, E.J. Yang, E. Lee, J.H. Paek, B.M. Wu, and D.T. Kamei, “Ionic liquid aqueous two-phase systems for the enhanced paper-based detection of transferrin and Escherichia coli.,” Front. Chem., 6 (2018). 
  14. A.E. Kita, D.W. Bradbury, Z.D. Taylor, D.T. Kamei, and M.A. St. John, “Point-of-care cerebrospinal fluid detection,” Otolaryngol. Head Neck Surg., 159 (2018) 824-829. 
  15. S.F. Cheung, M.F. Yee, N.K. Le, B.M. Wu, and D.T. Kamei, “A one-pot, isothermal DNA sample preparation and amplification platform utilizing aqueous two-phase systems,” Anal. Bioanal. Chem., 410 (2018) 5255-5263. 
  16. S.F. Cheung, M.F. Yee, N.K. Le, E.A. Gomes, Z. Afrasiabi, and D.T. Kamei, "A combined aqueous two-phase system and spot-test platform for the rapid detection of Escherichia coli O157:H7 in milk", SLAS Technology, 23 (2018) 57-63. 
  17. G.L. Mosley, D.Y. Pereira, Y. Han, S.Y. Lee, C.M. Wu, B.M. Wu, and D.T. Kamei, "Improved lateral-flow immunoassays for chlamydia and immunoglobulin M by sequential rehydration of two-phase system components within a paper-based diagnostic", Microchim. Acta, 184 (2017) 4055-4064. 
  18. D.J. Yoon, K.Y. Chen, A.M. Lopes, A.A. Pan, J. Shiloach, A.B. Mason, and D.T. Kamei, "Mathematical modeling of mutant transferrin-CRM107 molecular conjugates for cancer therapy," J. Theor. Biol. 416 (2017) 88-98.
  19. A.M. Lopes, K.Y. Chen, and D.T. Kamei, “A transferrin variant as the targeting ligand for polymeric nanoparticles incorporated in 3-D PLGA porous scaffolds,” Mater. Sci. Eng. C Mater. Biol. Appl. 73 (2017) 373-380.
  20. K.M. Mayle, K.R. Dern, V.K. Wong, K.Y. Chen, S. Sung, K. Ding, A.R. Rodriguez, S. Knowles, Z. Taylor, Z.H. Zhou, W.S. Grundfest, A.M. Wu, T.J. Deming, and D.T. Kamei, “Engineering A11 minibody-conjugated, polypeptide-based gold nanoshells for prostate stem cell antigen (PSCA)-targeted photothermal therapy,” SLAS Technology, 22 (2017), 26-35. 
  21. G.L. Mosley, P. Nguyen, B.M. Wu, and D.T. Kamei, “Development of quantitative radioactive methodologies on paper to determine important lateral-flow immunoassay parameters,” Lab Chip, 2016, 16 (2016), 2871-2881.
  22. K.M. Mayle, K.R. Dern, V.K. Wong, S. Sung, K. Ding, A.R. Rodriguez, Z. Taylor, Z.H. Zhou, W.S. Grundfest, T.J. Deming, and D.T. Kamei, “Polypeptide-based gold nanoshells for photothermal therapy,” SLAS Technology, 22 (2017), 18-25.
  23. A.R. Rodriguez, U.-J. Choe, D.T. Kamei, and T.J. Deming, “Use of methionine alkylation to prepare cationic and zwitterionic block copolypeptide vesicles,” Israel J. Chem. 56 (2016) 607-613.
  24. ​R.Y.T. Chiu, A.V. Thach, C.M. Wu, B.M. Wu, and D.T. Kamei, “An aqueous two-phase system for the concentration and extraction of proteins from the interface for detection using the lateral-flow immunoassay,” PLoS One 10 (2015) e0142654.
  25. ​B.S. Lee, A.T. Yip, A.V. Thach, A.R. Rodriguez, T.J. Deming, and D.T. Kamei. "The targeted delivery of doxorubicin with transferrin-conjugated block copolypeptide vesicles," Int. J. Pharm. 496 (2015) 903-911.
  26. D.Y. Pereira, R.Y.T. Chiu, S.C.L. Zhang, B.M. Wu, and D.T. Kamei, "Single-step, paper-based concentration and detection of a malaria biomarker," Anal Chim Acta. 882 (2015) 83-89.
  27. B. Voth, D.T. Nagasawa, P.E. Pelargos, L.K. Chung, N. Ung, Q. Gopen, S. Tenn, D.T. Kamei, and I. Yang, “Transferrin receptors and glioblastoma multiforme: Current findings and potential for treatment,” J. Clin. Neurosci. 22 (2015) 1071-1076.
  28. S.F. Cheung, S.K. Cheng, and D.T. Kamei, “Paper-based systems for point-of-care biosensing,” J. Lab. Autom. 20 (2015) 316-333. 
  29. J.R. Kramer, N.W. Schmidt, K.M. Mayle, D.T. Kamei, G.C.L. Wong, and T.J. Deming, “Reinventing cell penetrating peptides using glycosylated methionine sulfonium ion sequences,” ACS Cent. Sci. 1 (2015) 83-88.
  30. A.R. Rodriguez, U.-J. Choe, D.T. Kamei, and T.J. Deming, “Blending of diblock and triblock copolypeptide amphiphiles yields cell penetrating vesicles with low toxicity,” Macromol. Biosci. 15 (2015) 90-97.
  31. E. Jue, C.D. Yamanishi, R.Y.T. Chiu, B.M. Wu, and D.T. Kamei, “Using an aqueous two-phase polymer-salt system to rapidly concentrate viruses for improving the detection limit of the lateral-flow immunoassay,” Biotechnol. Bioeng. 111 (2014) 2499-2507.
  32. R.Y.T. Chiu, P.T. Nguyen, J. Wang, E. Jue, B.M. Wu, and D.T. Kamei, “Dextran-coated gold nanoprobes for the concentration and detection of protein biomarkers,” Ann. Biomed.. Eng. 42 (2014) 2322-2332.
  33. R.Y.T. Chiu, E. Jue, A.T. Yip, A.R. Berg, S.J. Wang, A.R. Kivnick, P.T. Nguyen, and D.T. Kamei, "Simultaneous concentration and detection of biomarkers on paper," Lab Chip 14 (2014) 3021-3028.  Highlighted article in Lab Chip.
  34. R.Y.T. Chiu, T. Tsuji, S.J. Wang, J. Wang, C.T. Liu, and D.T. Kamei, “Improving the systemic drug delivery efficacy of nanoparticles using a transferrin variant for targeting,” J. Control. Release 180 (2014) 33-41.
  35. D.Y. Pereira, A.T. Yip, B.S. Lee, and D.T. Kamei, “Modeling mass transfer from carmustine-loaded polymeric implants for malignant gliomas,” J. Lab. Autom. 19 (2014) 19-34.  Cover article.
  36. V.Z. Sun, U.-J. Choe, A.R. Rodriguez, H. Dai, T.J. Deming, and D.T. Kamei, “Transfection of mammalian cells using block copolypeptide vesicles,” Macromol. Biosci. 13 (2013) 539-550.
  37. U.-J. Choe, A.R. Rodriguez, Z. Li, S. Boyarskiy, T.J. Deming, and D.T. Kamei, “Characterization and minimization of block copolypeptide vesicle cytotoxicity using different hydrophobic chain lengths,” Macromol. Chem. Physic. 214 (2013) 994-999.
  38. U.-J. Choe, A.R. Rodriguez, B.S. Lee, S.M. Knowles, A.M. Wu, T.J. Deming, and D.T. Kamei, “Endocytosis and intracellular trafficking properties of transferrin-conjugated block copolypeptide vesicles,” Biomacromolecules 14 (2013) 1458-1464.
  39. J.R. Kramer, A.R. Rodriguez, U.-J. Choe, D.T. Kamei, and T.J. Deming, “Glycopolypeptide conformations in bioactive block copolymer assemblies influence their nanoscale morphology,” Soft Matter 9 (2013) 3389-3395.
  40. G.L. Mosley, C.D. Yamanishi, and D.T. Kamei, “Mathematical modeling of vesicle drug delivery systems: 1. Vesicle formation and stability along with drug loading and release,” J. Lab. Autom. 18 (2013) 34-45.
  41. C.T. Ying, J. Wang, R.J. Lamm, and D.T. Kamei, “Mathematical modeling of vesicle drug delivery systems: 2. Targeted vesicle interactions with cells, tumors, and the body,” J. Lab. Autom. 18 (2013) 46-62.
  42. F. Mashayekhi, A.M. Le, P.M. Nafisi, B.M. Wu, and D.T. Kamei, “Enhancing the lateral-flow immunoassay for detection of proteins using an aqueous two-phase micellar system,” Anal. Bioanal. Chem. 404 (2012) 2057-2066.
  43. K. Zhao, U.-J. Choe, D.T. Kamei, and G.C.L. Wong, “Enhanced activity of cyclic transporter sequences driven by phase behavior of peptide–lipid complexes,” Soft Matter 8 (2012) 6430-6433.
  44. A.R. Rodriguez, U.-J. Choe, D.T. Kamei, and T.J. Deming, “Fine tuning of vesicle assembly and properties using dual hydrophilic triblock copolypeptides,” Macromol. Biosci. 12 (2012) 805-811.
  45. K.M. Mayle, A.M. Le, and D.T. Kamei, “The intracellular trafficking pathway of transferrin,” Biochim. Biophys. Acta. 1820 (2012) 264-281.
  46. U.J. Choe, V.Z. Sun, J.K. Tan, and D.T. Kamei, “Self-assembled Polypeptide and Polypeptide Hybrid Vesicles:  from Synthesis to Application,” Top. Curr. Chem. 310 (2012) 117-134.
  47. A. Mishra, G.H. Lai, N.W. Schmidt, V.Z. Sun, A.R. Rodriguez, R. Tong, L. Tang, J. Cheng, T.J. Deming, D.T. Kamei, and G.C. Wong, “Translocation of HIV TAT peptide and analogues induced by multiplexed membrane and cytoskeletal interactions”, Proc. Natl. Acad. Sci. U.S.A. 41 (2011) 16883-16888.
  48. D.J. Yoon, C.T. Liu, D.S. Quinlan, P.M. Nafisi, and D.T. Kamei, “Intracellular trafficking considerations in the development of natural ligand-drug molecular conjugates for cancer,” Ann. Biomed. Eng. 39 (2011) 1235-1251.
  49. V.Z. Sun, Z. Li, T.J. Deming, and D.T. Kamei, “Intracellular fates of cell-penetrating block copolypeptide vesicles,” Biomacromolecules 12 (2011) 10-13.
  50. F. Mashayekhi, R.Y.T. Chiu, A.M. Le, F.C. Chao, B.M. Wu, and D.T. Kamei, “Enhancing the lateral-flow immunoassay for viral detection using an aqueous two-phase micellar system,” Anal. Bioanal. Chem. 398 (2010) 2955-2961.
  51. W.J. Ho, E.A. Pham, J.W. Kim, C.W. Ng, J.H. Kim, D.T. Kamei, and B.M. Wu, “Incorporation of multicellular spheroids into three-dimensional polymeric scaffolds provides an improved tumor model for screening anticancer drugs,” Cancer Sci. 101 (2010) 2637-2643.
  52. D.J. Yoon, B.H. Kwan, F.C. Chao, T.P. Nicolaides, J.J. Phillips, G.Y. Lam, A.B. Mason, W.A. Weiss, and D.T. Kamei, "Intratumoral therapy of glioblastoma multiforme using genetically engineered transferrin for drug delivery," Cancer Res. 70 (2010) 4520-4527.
  53. E.A. Pham, W.J. Ho, D.T. Kamei, and B.M. Wu, “Modification of the diphenylamine assay for cell quantification in three-dimensional biodegradable polymeric scaffolds,” J. Biomed. Mater. Res. B Appl. Biomater. 92 (2010) 499-507.
  54. F. Mashayekhi, A.S. Meyer, S.A. Shiigi, V. Nguyen, and D.T. Kamei, “Concentration of mammalian genomic DNA using two-phase aqueous micellar systems,” Biotechnol. Bioeng. 102 (2009) 1613-1623.
  55. D.J. Yoon, D.S.H. Chu, C.W. Ng, E.A. Pham, A.B. Mason, D.M. Hudson, V.C. Smith, R.T.A. MacGillivray, and D.T. Kamei, “Genetically engineering transferrin to improve its in vitro ability to deliver cytotoxins,” J. Control. Release 133 (2009) 178-184.
  56. B.J. Lao and D.T. Kamei, “Systems approach to therapeutics design,” Methods Mol. Biol. 500 (2009) 221-236.
  57. B.J. Lao and D.T. Kamei, “Investigation of cellular movement in the prostate epithelium using an agent-based model,” J. Theor. Biol. 250 (2008) 642-654.
  58. B.J. Lao and D.T. Kamei, “Improving therapeutic properties of protein drugs through alteration of intracellular trafficking pathways,” Biotechnol. Prog. 24 (2008) 2-7.
  59. B.J. Lao, W.P. Tsai, F. Mashayekhi, E.A. Pham, A.B. Mason, and D.T. Kamei, “Inhibition of transferrin iron release increases in vitro drug carrier efficacy,” J. Control. Release 117 (2007) 403-412.
  60. N. Li, D.T. Kamei, and C.M. Ho, “On-chip continuous blood cell subtype separation by deterministic lateral displacement,” Proceedings of the 2nd IEEE International Conference on Nano/Micro-Engineered and Molecular Systems (2007) 932-936.
  61. E.P. Holowka, V.Z Sun, D.T. Kamei, and T.J. Deming, “Polyarginine segments in block copolypeptides drive both vesicular assembly and intracellular delivery,” Nat. Mater. 6 (2007) 52-57.
  62. B.J. Lao and D.T. Kamei, “A compartmental model of iron regulation in the mouse,” J. Theor. Biol. 243 (2006) 542-554.
  63. D.T. Kamei, B.J. Lao, M.S. Ricci, R. Deshpande, H. Xu, B. Tidor, and D.A. Lauffenburger, “Quantitative methods for developing Fc mutants with extended half-lives,” Biotechnol. Bioeng. 92 (2005) 748-760.
  64. C.O. Rangel-Yagui, H. Lam, D.T. Kamei, D.I.C. Wang, A. Pessoa Jr., and D. Blankschtein, “Glucose-6-phosphate dehydrogenase partitioning in two-phase aqueous mixed (nonionic/cationic) micellar systems,” Biotechnol. Bioeng. 82 (2003) 445-456.
  65. D.T. Kamei, J.A. King, D.I.C. Wang, and D. Blankschtein, “Separating lysozyme from bacteriophage P22 in two-phase aqueous micellar systems,” Biotechnol. Bioeng. 80 (2002) 233-236.
  66. D.T. Kamei, D.I.C. Wang, and D. Blankschtein, “Fundamental investigation of protein partitioning in two-phase aqueous mixed (nonionic/ionic) micellar systems,” Langmuir 18 (2002) 3047-3057.
  67. D.T. Kamei, J.A. King, D.I.C. Wang, and D. Blankschtein, “Understanding viral partitioning in two-phase aqueous nonionic micellar systems: 2. Effect of entrained micelle-poor domains,” Biotechnol. Bioeng. 78 (2002) 203-216.
  68. D.T. Kamei, C. Liu, C. Haase-Pettingell, J.A. King, D.I.C. Wang, and D. Blankschtein, “Understanding viral partitioning in two-phase aqueous nonionic micellar systems: 1. Role of attractive interactions between viruses and micelles,” Biotechnol. Bioeng. 78 (2002) 190-202.
  69. C. Liu, D.T. Kamei, J.A. King, D.I.C. Wang, and D. Blankschtein, “Separation of proteins and viruses using two-phase aqueous micellar systems,” J. Chromatogr., B: Biomed. Sci. Appl. 711 (1998) 127-138.
Department of Bioengineering | UCLA 
420 Westwood Plaza | Los Angeles, CA 90095-1600 
kamei@seas.ucla.edu